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Abstract. When modelling boundary value problems numerically, the choice of
discretization is of great importance. While the effect of the discretization on the
approximation accuracy has been studied extensively, little has been said about
model order reduction aspects. In this study, we explore how this choice can affect
the reducibility of geometrically parameterized models. In particular, the focus is on
comparing the performance of isogeometric and conventional finite element methods.
To this end, we use a hybrid Krylov-POD procedure to reduce isogeometric and
finite element models of two test cases involving linear dynamics. The results of this
preliminary investigation indicate that isogeometric methods may lead to models
that are more amenable to reduction.

1 Introduction

The numerical solution of moderately complex partial differential equations (PDEs)
is a task that most modern computer systems can manage without much trouble.
However, when studying parameterized PDEs, hardware capacity may quickly be
surpassed since the computational effort required for simulating a single instantiated
model is already quite substantial. The problem becomes all the more pronounced
in multi-query situations, where the parameter space needs to be sampled in hun-
dreds or thousands of points. These situations often arise in practical parameter
studies, for instance in the context of design optimization, control, or uncertainty
quantification.
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The problem of cost can be addressed through the use of surrogate models. Such
models act as a substitute for the high-fidelity (also called truth) model and are
meant to reduce computational load while preserving an acceptable level of accu-
racy. Surrogate modelling is a vast field encompassing both black-box (data-driven)
and invasive methodologies. An important class consists of parametric model or-
der reduction (PMOR) techniques [1], which rely on a dimension-reducing system
projection. These techniques are particularly effective since they explicitly use the
available information on the model structure.

In case the geometry is considered variable, the domain discretization will also
be affected as the parameter varies. Since PMOR operates directly on the discrete
matrices, reduction characteristics implicitly depend on the discretization. It is in-
tuitively clear that, for PMOR techniques to be effective, the physical significance
of each discrete variable should remain relatively constant. At the very least mesh
topology should be preserved. The fact that topology preservation is necessary has
been recognized by several authors [2, 3, 4], but to the best of our knowledge little to
no attention has been devoted to the less obvious questions of how to best reshape
the computational mesh and which function spaces to choose.

The tight integration between geometric and analytic models offered by isogeo-
metric (IG) methods [5] suggests that a combination of isogeometric analysis (IGA)
and PMOR could be highly effective when used to reduce problems with parame-
terized geometry. IG models automatically provide continuous mesh changes as the
geometry is varied. The resulting link between the degrees of freedom (DOF) for
different parametric instances might be exploited to construct reduction bases that
are valid across larger regions of the parameter space. In the past, IGA has been
combined with PMOR techniques [6, 7], but no explicit comparison to conventional
methods is provided.

Presently, we aim to investigate how the choice of discretization may affect the
reducibility of the resulting (geometrically) parametrized models. In particular, IGA
is compared to conventional finite element analysis (FEA). The further structure of
the paper is as follows: In Sections 2 and 3, we give an overview of the methodology
and its supporting theory. This is followed by an application to two case studies in
Section 4. The main conclusions are formulated in the final part.

2 Full order model description: discretization of PDE models

The focus in the present work is on linear, dynamic and continuous systems, as
encountered for example in structural dynamics and (vibro-)acoustics. In an abstract
sense, the stationary behaviour of such systems can usually be described by an elliptic
boundary value problem. As a model problem, let us consider the inhomogeneous
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Helmholtz equation with Dirichlet boundary conditions (BC). The problem is to find
a solution u on a domain Ω with boundary Γ such that

(∇2 + k2)u = −f on Ω,

u = 0 on Γ,
(1)

where ∇2 represents the harmonic operator, k is the wavenumber and f is a dis-
tributed forcing field. Physically, the oscillating field u might represent e.g. a pres-
sure. The weak formulation, obtained using standard techniques [8], may be written
in terms of a continuous bilinear form a and a continuous linear functional l:

a(u, v) = l(v) ∀v ∈ H1
0 , (2)

where H1
0 is the Hilbert space of functions that satisfy the Dirichlet BC and whose

values and first derivatives are (Lebesgue) square integrable. As long as k2 does not
equal an eigenvalue of the Helmholtz operator, a will be weakly coercive and the
existence of a unique solution is guaranteed by the Nec̆as Theorem [8].

To obtain numerical approximations, a suitable problem discretization needs to be
introduced. In the present paper, two ‘paradigms’ are studied: (conventional) FEA
and IGA. For both methods, the most common approach to constructing discrete
approximations is a Galerkin projection, where the search spaces for the functions u
and v are taken to be identical, finite-dimensional subspaces of H1

0 . Let the functions
φi, i = 1 . . . N consitute a basis of this space, then the elements of the (dynamic)
stiffness matrix and force vector are given by

Kij
dyn = a(φj, φi), f i = l(φi). (3)

The discrete problem is now a linear system, which can be concisely represented
using matrix notation:

Kdynu = f . (4)

It is common to make the dependence on the dynamic parameter k explicit, writing

(K − k2M )u = f . (5)

Not only the solution field, but also the domain itself has to be discretized in
order to accomodate more complex geometries. In an abstract sense, the geometry
is approximated by the image of a (set of) parent domain(s) Ω̃ after a geometric
transformation:

Ω ≈
nel⋃
i=1

Ti(Ω̃i), (6)
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where nel is the number of parent domains. Usually, the transformations Ti are chosen
to lie in the same subspace as u on the subdomain Ti(Ω̃i): this is the isoparametric
concept.

Although variations to this pattern exist – e.g. collocation of the strong form [9]
or sub- and superparametric approaches [10] – the basic strategy described above
is often used in practice and provides a common ground between IGA and FEM.
In this case both paradigms turn out to be very similar on a conceptual level, even
though the emphasis is often placed on their differences. The remainder of this
section provides a more detailed picture of each method’s specifics.

Finite element discretization An important choice in developing the problem
discretization – and setting apart FEA and IGA – is the choice of the discrete func-
tion space. By the isoparametric concept, both the unknown field and the domain
geometry are approximated within this space. The classical FEA relies on (low-
order) polynomial functions, which are applied in a piecewise manner: the entire
problem domain is subdivided into elements with simple shapes that can be repre-
sented with tensor-product polynomials. In most cases, the geometry can only be
approximately represented, which inevitably leads to errors. This error is not neces-
sarily made smaller by refinement since this operation may be based on the coarse
approximation rather than the original geometry.

While the approach can be applied to arbitrary geometries, it is not always an easy
task. Meshing must be done carefully since it has a strong impact on the approxi-
mation accuracy. Furthermore, design variability is often not taken into account in
(automatic) meshing procedures. Because the definition of the geometry is separated
from analysis, even small design modifications cause the mesh to be rebuilt from the
ground up. Besides the obvious cost penalty, projection-based reduction methods
cannot be applied as even for geometrically similar meshes, the DOF numbering
may be different. Related problems are encountered in fluid-structure-interaction,
shape optimization and nonlinear mechanics. To address such issues, mesh morph-
ing techniques have been developed; see [11] for an overview of the various methods.
Many of these techniques still entail solving a considerably difficult subproblem, and
caution always remains necessary to prevent low-quality meshes.

Isogeometric discretization The isogeometric method treats the selection of
shape functions in reverse, taking the (spline) functions defining the geometry and
adapting the analysis accordingly. The driving factor for this paradigm switch is
twofold. First of all, the description (6) of the domain Ω is exact even at the coarsest
refinement level, thus avoiding errors due to approximate geometry descriptions. Be-
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sides this important advantage, the meshing step can be entirely eliminated since the
discretization of the domain comes along with the geometry. Hence a computational
‘mesh’ is obtained at no added cost.

In computer graphics applications, non-uniform rational B-splines (NURBS) are
standard in representing freeform objects, since they allow intuitive modelling and
are able to represent conic sections exactly [12]. A NURBS curve R(ξ) is defined by
a knot vector [ξ1 . . . ξk], 0 ≤ ξ1 ≤ · · · ≤ ξk, a polynomial order l, and a set of control
points and weights Pi ∈ RD, wi ∈ R, i = 1 . . . k − l − 1:

R(ξ) =

∑k−l−1
i=1 N l

i (ξ)wiPi∑k−l−1
j=1 N l

j(ξ)wj

, (7)

where N l
i (ξ) are the B-spline basis functions derived from the knot vector. An impor-

tant property of NURBS curves is that they have continuity C l−m across knots of mul-
tiplicity m. For non-repeated knots and elevated polynomial orders, high smoothness
is attained which can be exploited for solving higher-order problems. Because knot
duplication and order elevation do not commute, refinement in isogeometric analy-
sis can be done in different ways. IGA is even able to offer a continuity-increasing
refinement procedure called k-refinement [5].

Surfaces and volumes (commonly called patches) are constructed by taking the
tensor product of two, respectively three NURBS curves. The shape and parameter-
ization are determined by a control net, comparable to a structured mesh in FEM.
This structure is somewhat limiting in the sense that only topologically simple ge-
ometries can be represented, but this is only a sidenote in the context of the present
study. On the contrary, the provision of a mesh that naturally adapts to changing
geometry can be considered beneficial with respect to the central hypothesis of this
work: as the mesh changes in a continuous fashion, the essential meaning of the DOF
is preserved quite well, which is supposed to lead to better reducibility. Moreover,
and unlike FEM, isogeometric methods are robust to poor-quality parameterizations
[13]. This freedom might be exploited to achieve better reduction performance.

3 Parametric model order reduction through projection

A semi-discretized, Laplace-transformed, second-order dynamic system – both for
FEM and IGA – can be represented in matrix form as(

s2M + sC + K
)
u = f , (8)

where M is the mass matrix, C is the damping matrix and K is the static stiffness
matrix, while the Laplace variable s now takes on the role of the dynamic parameter.
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Note how (5) is a generic, although simplified, example of such a system; more
complex PDE models may be discretized and transformed to the form (8) in a similar
way.

The reduction of systems like (8) is the topic of ‘ordinary’ MOR, which encom-
passes techniques developed in the fields of structural dynamics, numerical math-
ematics and control [14]. The common idea is to decrease the effective number of
DOF from N to n by applying a projection transformation, i.e.

W T
(
s2M + sC + K

)
V u = W Tf , (9)

with V ,W ∈ RN×n and n � N . The projection is one-sided if V = W and two-
sided otherwise. For simplicity, we assume the former here, but this choice may also
be motivated by the need for stability preservation [15]. In order to construct the
projection matrix, we apply the Krylov subspace technique for second-order systems
described in [16].

The models considered here have a more general, implicit, parametric dependence.
Hence a PMOR technique with greater applicability is necessary. In the present
work we choose to adopt a hybrid scheme similar to [17]. We make use of the
local reduction bases built with the Krylov method: a global reduction space, valid
for the entire parametric domain, is found as the union of local spaces for several
parametric instances. Suppose a set of ns local reduction spaces has been given as
the column span of matrices Vi ∈ RN×nl . Their union is given by the range of the
concatenated matrix [V1 V2 . . . Vns ]. However, the columns of this matrix may
no longer be linearly independent, let alone mutually orthogonal. Using a singular
value decomposition (SVD), the rank is revealed and the dominant directions can be
identified. We have

[V1 V2 . . . Vns ] = RΣLT , (10)

where Σ ∈ RN×(nlns) contains the singular values σi on the diagonal and R ∈
RN×N , L ∈ Rnlns×nlns are orthonormal matrices. It can be shown that the SVD
provides an optimal decomposition of the snapshot matrix [18]: most information
about the snapshots is contained within the first columns of R. Moreover, the rela-
tive information content of the i-th left singular vector is proportional to σ2

i and the
information lost in the truncation is proportional to

∑nlns

i=r+1 σ
2
i if r columns are kept.

It is further noted that, by virtue of this last property, the singular value decompo-
sition is a useful tool for assessing the problem’s intrinsic amenability to reduction. In
[8], the following reducibility test is proposed: first collect several high-fidelity snap-
shots into a matrix, next calculate its SVD and then consider the singular values.
If the values show rapid decay, then the information contained within the snapshots
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can be represented using a low number of singular vectors. Provided a representative
number of samples are taken, this implies that solutions reside in a low-dimensional
subspace. If the reduction technique described here is used, this test can be carried
out without large cost penalties since the snapshots are calculated anyway.

4 Validation of reduced order model accuracy

4.1 Curved beam

As a first example, consider a simply supported beam subject to a harmonic
transverse point load (see Figure 1). The beam curvature radius R is taken as
the variable geometric parameter. Two discretizations are constructed following
the finite element and isogeometric paradigms. The FE model is built using the
commercial software package NX Nastran. The beam is equally divided into a total
of 60 linear elements of the type CBAR [19], leading to a model with 183 DOF. For
the IG discretization, an in-house code based on Euler-Bernoulli theory is used. As
the original geometry is decribed with a quadratic NURBS curve, order-two shape
functions are used and the model is h-refined until 182 DOF are obtained.

The frequency-domain reduction bases are found using the Krylov algorithm with
6 order-two expansion points equally spread over the 0-500 Hz frequency interval.
These local bases are constructed at five parametric configurations, corresponding
to radii of 0.15, 0.1875, 0.375 and 0.75 meters as well as the straight beam. After
the SVD, 18 global vectors are retained. This basis is used to reduce models with an
unsampled radius of 0.25 m. The frequency response function (FRF) errors of the
reduced order models relative to truth models are plotted in on the left in Figure 2.
It is remarkable that the IG approach leads to errors that are far below those of the
FE approach, when each is compared to its original full order representation. The
SVD-based reducibility test described in Section 3 also indicates that the discrete
solution manifold is of lower dimension in case the IG description is used. A set
of snapshots is generated for the 6-by-6 grid of frequencies and radii used before.
In Figure 2 (right), the relative magnitudes of the singular values of the snapshot
matrix are shown; the IG case displays a markedly stronger decay and the values are
already significantly lower at the 18-th singular value.

4.2 Acoustic cavity

Secondly, a 2-dimensional interior acoustic problem is treated. We examine a
hard-walled air-filled resonant cavity, shaped like a square with curved sides (Figure
3). A monopole source located at the top right corner excites a pressure response
associated to a standing wave pattern. The pressure at a certain interior point –
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F

RL

Parameter Value

Young’s modulus 69 GPa
Density 7200 kgm−3

Poisson’s ratio 0.3
Damping coefficient α 10−6

Damping coefficient β 10
Support spacing (L) 0.3 m
Beam thickness 0.002 m
Beam width 0.02 m

Figure 1: Problem definition of the curved beam.

whose location varies along with the geometry – is taken as an output. The variable
parameter defines the inwards or outwards curvature of the sides. The 2D-acoustics
module of the COMSOL software package is used in creating the FE discretizations,
where a mapped mesh is provided by an internal morphing function. An in-house
extension of the GeoPDEs toolbox [20, 21] generates the IG model matrices of the
exact, h-refined geometry. Both models finally encompass 10201 pressure DOF,
corresponding to a 100-by-100 square grid of linear elements.

In this case, the parametric domain is sampled at four locations, with curvature
radii R equal to ±

√
2/10 and ±

√
2/5 meters. At every point a local basis is derived

from 6 expansion points of order 5 at frequencies between 50 Hz and 550 Hz. The
total of 120 basis vectors is reduced to 100 by truncation of the SVD. The FRF
errors occuring when reducing a model representing an ordinary square are then
calculated. As in the previous example, Figure 4 shows that a reduced FE model
performs slightly but consistently worse than a reduced IG model with the same
number of DOF, at least in the relevant frequency range. The snapshots’ singular
values also attribute higher importance to the later components and show that the
difference in reducibility is smaller than in the beam case.

5 Conclusion

Even though it is clear that the domain discretization of geometrically parameter-
ized PDE models can have a profound impact on the effectiveness of PMOR methods,
the existing literature on the topic is scarce. While this observation applies to con-
ventional FE approaches, the relatively new IG methods deserve specific attention.
Because of their strong connection between the design and analysis models, as well
as their robustness to mesh distortions, improved reduction performance may be ex-
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Figure 2: Reducibility for the curved beam. (Left) Reduction errors on the FRF (in
%). (Right) Relative magnitude of the singular values.

pected. Our work provides some numerical experiments testing this hypothesis. The
focus is on linear dynamic models emerging from oscillating, continuous systems.

After briefly touching the theoretical background and motivations for the inves-
tigation, a combined Krylov-POD reduction method and a reducibility test are de-
scribed. These tools are applied to two test problems, comprising a dynamically
loaded beam and an acoustic cavity. The reduced IG model provides a slight to
moderate accuracy gain over the reduced FE model, providing some evidence to
support the hypothesis. A full validation will require more tests and is the topic of
future research. Importantly, theoretical insights are needed to better understand
which effects come into play.
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