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Abstract. In this work, new Least Square Moving Particle Semi-implicit (LSMPS)
formulations for the modelling of the heat conduction in laser irradiation processes are de-
veloped. These new LSMPS formulations guarantee the conservation of the total thermal
energy during the heat exchange between particles. By conducting the heat conduction
simulations, in which the standard LSMPS method can provide accurate temperature
distribution, and by comparing the results with an analytical solution, it was confirmed
that the proposed method is as accurate as the standard LSMPS method. Moreover, the
heat conduction with an external heat source, in which the total thermal energy is not
conserved by using the standard LSMPS method, was successfully simulated by using
the proposed method. The simulation of laser irradiation was also conducted and the
validity of the proposed method has been confirmed by comparing numerical results with
experimental data.

1 INTRODUCTION

Full Lagrangian particle methods have advantages when applied to simulations of multi-
physics phenomena such as the free surface flow, fluid-structure interactions, multi-phase
flow, phase change, etc. Particle methods such as the Moving Particle Semi-implicit
method (MPS) [4] and Smoothed Particle Semi-implicit (SPH) [3] methods commonly
calculate the derivatives by involving adjacent particles in a support domain utilising a
weight function. However, the particle methods have been suffering from deterioration
of the accuracy especially for boundary particles because their neighbouring particles
are not distributed isotropically. This deterioration of the accuracy can take place not
only for the boundary particles but also for any particles whose neighbouring particles
are not distributed regularly. To overcome this inaccuracy, the Moving Least Square
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(MLS) method has been applied to the MPS method, being labelled as the Least Square
MPS (LSMPS) [6] method. The LSMPS method can use any polynomial degree for
the interpolation of variables, and therefore it can provide more accurate results when
compared with other particle based methods. More importantly, the LSMPS method can
give accurate results even if the particles are distributed irregularly, which make them
particularly suitable for accurate multi-resolution simulations [7].

The LSMPS method, however, does not guarantee the conservation of the physical
quantities such as the momentum and energy. As Tanaka et al. [7] demonstrated, the
momentum and kinematic energy are well conserved in some cases, however, the conser-
vation of energy is not always fulfilled when least square techniques are used for heat
conduction, such as for example for the laser irradiation process. The laser irradiation
provides a large intake of thermal energy into the surface of the substrate. As a result,
the surface of the substrate accounts for most of the higher temperature and therefore
the temperature distribution is not smooth enough to be interpolated by the least square
method. Therefore, the accurate interpolation is no longer possible even if the least square
formulation is applied. Note that there are many formulations which can conserve the
thermal energy in the traditional MPS and SPH methods [5], however, these methods are
only accurate for regular particle distributions.

In this work, the LSMPS method is improved by considering the conservation of the to-
tal thermal energy so that the simulation of heat conduction for laser irradiation processes
can be performed accurately. The multi-resolution particle arrangements are utilised for
the efficient simulation by locating smaller particles only around the laser irradiation area.
The accuracy of the proposed formulations is verified by comparing the results of multi-
resolution simulations for the heat conduction with analytical solutions and experimental
results.

2 STANDARD LSMPS METHOD

2.1 FORMULATION FOR DERIVATIVES

In the standard LSMPS method, the derivatives for an arbitrary scalar variable f (x)
at the location of particle i is formulated as follows:

〈Dxf (x)〉i =
〈
M (x)−1〉

i
〈m (x, f)〉i (1)

〈M (v)〉i =
∑

j 6=i

〈w〉ij b (vij) ⊗ b (vij) (2)

〈m (v, φ)〉i =
∑

j 6=i

〈w〉ij φijb (vij) (3)

where x is a coordinate, w is a weight function, Dx is a set of differential operators, M
is a moment matrix, m is a moment vector and b is a set of coordinates. Note that φi

and 〈φ〉i represent a value φ at the location of particle i, and 〈φ〉ij denotes a value defined
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between a pair of particles i and j. On the other hand, φij is defined as a relative value
between particles i and j, i.e., φij = φj − φi. For the second order interpolation in two
dimensions, for example, Dx and b are given as follows:

Dx =

[
∂

∂x

∂

∂y

∂2

∂x2

∂2

∂x∂y

∂2

∂y2

]T

(4)

b (v) =
[
x y x2 xy y2 ]T

(5)

The weight function w in the LSMPS method is normally defined as:

〈w〉ij =






(

1 −
|xij|
〈R〉ij

)2 (
|xij| ≤ 〈R〉ij

)

0
(

|xij | > 〈R〉ij
) (6)

where R is the radius of the support domain.

2.2 DISCRITISATION FOR HEAT CONDUCTION PROBLEMS

The governing equation for the heat conduction problem is defined and can be trans-
formed as follows:

∫
∂ (ρh)

∂t
dV =

∫
∇ · (k∇T ) dV =

∫ (
k∇2T + ∇k · ∇T

)
dV (7)

Equation (7) can be discretised directly by utilising the LSMPS method.

2.3 MULTI-RESOLUTION MODELLING

The LSMPS method enables more accurate interpolations even when the size of the
particles differs. However, when the diameters of the particles are varied, a one-way
particle interaction might occur. To prevent this one-way particle interaction, the radius
of the support domain for the multi-resolution simulation is defined between particles i
and j as follows:

〈R〉ij =
Ri +Rj

2
(8)

By defining the radius of the support domain like this, the one-way particle interaction is
avoided. This feature is important for the conserving formulation described afterwards.
Note that it is verified that the accuracy for the derivatives is good enough even if the
radius of the support domain is changed as in Equation (8) [7].
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3 PROPOSED METHOD

The improvements made for the LSMPS method for the thermal problem with laser
irradiation are detailed in this section. In the proposed method, a surface integral is
formulated based on the LSMPS method, and then the governing equation fo the heat
conduction is discretised as heat fluxes between particles.

Let us start with the divergence theorem for an arbitrary vector field v:
∫

∇ · vdV =

∮
v · dS (9)

The left hand side of Equation (9) can be discretised by using the LSMPS method in the
following way:

∫
∇ · vdV ≈ Vi 〈∇ · v〉i = Vi

∑

j 6=i

vij · G
(
wijHi

〈
M

∗ (x)−1〉
i
b

(
xij

Li

))
(10)

where the operator G is an extraction for a gradient from a set of derivatives, e.g.,

G (Dx) =
[

∂
∂x

∂
∂y

]T
. In order to obtain the surface integral from the discretisation for

the LSMPS method, Equation (10) is transformed as follows:
∫

∇ · vdV ≈
∑

j 6=i

vi + vj

2
· 〈S (x)〉ij + vi · 〈B (x)〉i (11)

where S and B are called the surface vector and the boundary vector respectively as
defined below:

〈S (v)〉ij = G
(
2Vi 〈w〉ij

〈
M (v)−1〉

i
b (vij)

)
(12)

〈B (v)〉i = −G

(

2Vi

〈
M (v)−1〉

i

∑

j 6=i

〈w〉ij b (vij)

)

(13)

Regarding that
vi+vj

2 is the vector between particles i and j, i.e., 〈v〉ij =
vi+vj

2 , the surface
integral can be formulated as follows:

∮
v · dS ≈

∑

j 6=i

〈v〉ij · 〈S (x)〉ij + vi · 〈B (x)〉i (14)

This equation is a new formulation for a surface integral with a particle method. This
equation is consistent with the standard LSMPS method, which means that it is generally
accurate but in some cases it does not guarantee the conservation of the thermal energy.
Note that the boundary vector B is zero when the particles are distributed on a regular
grid. In this case, the surface integral is formulated as below:

∮
v · dS ≈

∑

j 6=i

〈v〉ij · 〈S (x)〉ij (15)
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The governing equation for thermal conduction can be expressed by using the following
surface integral:

∫
∂ (ρh)

∂t
dV =

∫
∇ · (k∇T ) dV =

∮
k∇T · dS (16)

The flux-based formulation from Equation (15) can be applied to the surface integral
at the right hand side of Equation (16), resulting in the following discretised governing
equation for heat conduction:

ρiVi

∆hi

∆t
=

∑

j 6=i

〈k∇T 〉ij · 〈S (x)〉ij (17)

There are however some circumstances where Equation (17) does not conserve the total
thermal energy due to the surface vector not being symmetric for a pair of particles i
and j, i.e., 〈S (x)〉ij 6= − 〈S (x)〉ji. For the conservation of the total thermal energy, the
surface vector between particles i and j must satisfy the equation below:

〈S (x)〉ij = − 〈S (x)〉ji (18)

Assuming Equation (18) is satisfied, Equation (17) is replaced with the following equation:

ρiVi

∆hi

∆t
=

∑

j 6=i

〈k∇T 〉ij · 〈S∗ (x)〉ij (19)

where,

〈S∗ (v)〉ij =
1

2

(
〈S (v)〉ij − 〈S (v)〉ji

)
(20)

There is another important condition required for the conservation of the total thermal
energy which is the one related with the symmetry of the heat flux. If the heat flux
〈k∇T 〉ij is symmetric for a pair of particles i and j, then Equation (19) guarantees the
conservation of the thermal energy.

In this work, a few formulations for the heat flux k∇T are proposed. Normally, the
heat flux between particles i and j is expressed as:

〈k∇T 〉ij =
1

2

(
〈k∇T 〉i + 〈k∇T 〉j

)
(21)

This can be calculated by using the standard LSMPS method and this formulation is
referred as the LSMPS-like flux. However, this formulation can lead to the overshooting or
undershooting of enthalpies and temperatures. When using the traditional MPS method,
the heat flux can be expressed as:

〈k∇T 〉ij =
ki + kj

2

Tij

|xij|
xij

|xij|
(22)

This formulation is referred as the MPS-like flux in this work. Although it lacks informa-
tion in every direction other than the direction from particle i to particle j, it does not
cause the referred overshooting or undershooting discussed above.
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Table 1: List of methods used in this work

Label Method Heat Flux

LAP Laplacian : Eq. (7) -
FLX-L the conserving flux method : Eq. (19) the LSMPS-based flux : Eq. (21)
FLX-M the conserving flux method : Eq. (19) the MPS-based flux : Eq. (22)

4 SIMULATION RESULTS AND DISCUSSIONS

Several simulations were conducted by using the formulations proposed above. The
methods with corresponding labelling for the simulations used in this work are listed in
Table 1.

4.1 SIMULATION OF THE HEAT CONDUCTION PROBLEM WITH AN

ANALYTICAL SOLUTION

In order to show that the proposed methods can be properly used for the transient heat
conduction problem, the accuracy of the heat conduction simulation with each formulation
was verified by comparing the simulated temperature distributions with an analytical
solution. The following equation was used as the analytical solution for the transient heat
conduction:

T (x, y, t) =
∆T

2
(cos (πx) + cos (πy)) exp

(
−
π2kt

ρc

)
+ T0 +∆T (23)

where T is the temperature, k is the thermal conductivity, ρ is the density, c is the
specific heat and t is the time. Note that the physical properties are assumed to be
constant throughout the simulations in this section and then Equation (23) satisfies the
governing equation for the heat conduction from Equation (16).

The particles were located in the area of 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and the symmetric
boundary conditions were applied to the boundaries. Three particle arrangements shown
in Figure 1 were used in this section: a regular particle arrangement with the diameter of
10 mm, an irregular particle arrangement with the diameter 10 mm and a multi-resolution
particle arrangement. The irregular particle arrangement was created in the same manner
as in the work by Tamai and Koshizuka [6], making the standard deviation to be 10% of
the particles’ diameter. The diameters of the smaller and larger particles in the multi-
resolution particle arrangement were 10 mm and 5 mm respectively.

All methods listed in Table 1 were used for each geometry. The temperatures were
evaluated on the line of x = 0.3. The density was 2700 kg/m3, the thermal conductivity
was 200 W/K·m and the specific heat was 900 J/kg·K.

The temperature distributions after simulating for 2500 sec are shown in Figure 2. For
the regular particle arrangement, all methods were in good agreement with the analytical
solution as shown in Figure 2(a). Figures 2(b) and 2(c) show that when the particles were
not distributed regularly, the accuracy by the LSMPS-like flux method deteriorated. The
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(a) Regular (b) Irregular (c) Multi-Resolution

Figure 1: Geometries for the heat conduction simulation with an analytical solution

(a) Regular arrangement (b) Irregular arrangement (c) Multi-Resolution

Figure 2: Comparisons of the temperature distribution between the correct answer and the simulation
results

reason for this deterioration of the accuracy is due to the LSMPS-like method resulting in
the overshooting and undershooting as shown in the next section. Note that the standard
LSMPS method (LAP) and the proposed method with the MPS-like flux (FLX-M) were
both accurate for all cases in this section.

4.2 SIMULATION OF THE HEAT CONDUCTION PROBLEM WITH AN

EXTERNAL HEAT SOURCE

In this section, heat conduction simulations considering an external heat source are
demonstrated. The geometry used in the simulation was for a block with quadrangular
cross-section, whose dimensions were 100 mm × 10 mm × 10 mm. A uniform heat flux was
used as input for the quadrangular cross-section of the block and the heat was conducted
along the length direction of the block. Four particle arrangements were used in the
simulations as shown in Figure 3: two regular particle arrangements with the particles’
diameter of 2.5 and 1.0 mm, an irregular particle arrangement with the diameter of 1.0
mm and a multi-resolution particle arrangement with the diameters ranging from 1.0 to
2.5 mm. All methods listed in Table 1 were used for each particle arrangement described
just above.
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(a) Regular, L = 2.5 mm (b) Regular, L = 1.0 mm

(c) Irregular, L = 1.0 mm (d) Multi-Resolution, L = 1.0 to 2.5 mm

Figure 3: Geometries for the heat conduction simulations with the external heat source

The physical properties were the same as those used in section 4.1. The amount of
heat flux used for the simulations was 10 W and the simulations were conducted for 100
sec time. The temperatures were monitored on the centre line of the block and along the
length direction. The same simulation was conducted with ANSYS in order to be served
as reference solution for comparison purposes.

The temperature distribution obtained for each particle arrangement by each method
is shown in Figure 4. It is found that the standard LSMPS method, i.e. LAP, has large
errors for almost all geometries. The temperatures obtained by LAP are higher than the
results obtained by ANSYS for all measured points, which means that the total amount
of the thermal energy is increased. This is mainly because the standard LSMPS method
cannot calculate properly the heat flux from the external heat source. When a heat
flux is given at a surface from an external heat source, only the surface particles have
higher temperatures and the temperature distribution is no longer smooth enough to be
interpolated by the least square method. This is why the LSMPS method has large errors
for problems with external heat sources while it delivers accurate results for problems
with smooth temperature distribution as the one from section 4.1.

The proposed methods, on the other hand, provided more accurate results for all
geometries. This is because these methods guarantee the conservation of the thermal
energy. Although the temperature distribution obtained by the LSMPS-like flux method
(FLX-L) looks similar to the result provided by ANSYS from Figure 4, however, it gives
the overshooting and undershooting, and then the temperature distribution is not smooth
enough as shown in Figure 5. The temperatures plotted in Figure 4 were interpolated
by the LSMPS method and the overshooting and undershooting were smoothed through
the interpolation process. As a result, the temperature distribution looks smooth and
accurate enough even though the actual temperature distribution is a bit far from the
desired accurate results. On the other hand, Figure 5 shows that the distribution of the
temperature provided by the MPS-like flux method is smooth enough for every particle
arrangement.

4.3 SIMULATION OF THE LASER IRRADIATION

In this section, the simulations of the laser irradiation on a block were conducted
and the dimensions of the melted region were compared with experimental results. The
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(a) Regular (L = 2.5 mm) (b) Regular (L = 1.0 mm)

(c) Irregular (d) Multi-resolution

Figure 4: Temperature profiles for the heat conduction simulation with the external heat source

(a) Regular (LSMPS-like flux) (b) Regular (MPS-like flux)

(c) Irregular (LSMPS-like flux) (d) Irregular (MPS-like flux)

(e) Multi-resolution (LSMPS-like flux) (f) Multi-resolution (MPS-like flux)

Figure 5: Cross sections of the simulation results for the heat conduction simulation with the external
heat source

9



Masayuki Tanaka, Rui Cardoso and Hamid Bahai

Table 2: Laser conditions for the laser irradiation simulation

Laser Condition Diameter Power Velocity
mm kW m/s

A 1.04 0.33 2.08
B 1.44 0.68 4.17
C 2.04 1.36 8.33
D 2.87 2.68 16.67

Figure 6: Geometry for the laser irradiation simulation

simulations demonstrated in this section are based on the experiments conducted by
Ayoola et al. [1]. Four trial test cases were defined with different laser setups characterised
by the spot diameter D, the laser power P and the velocity U . A summary of these test
cases with corresponding laser parameters is described in Table 2, with the power density
fixed to 41.5 kW/cm2 and the total laser energy irradiated, during the period in which
the laser moves by the same distance as the spot diameter, fixed to 160 J. The material
for the block used in the experiments was the steel S275 and the physical properties used
in the simulations were the same as the ones used in the work by Ayoola et al. [1]: the
density was 7600 kg/m3, the thermal conductivity was 42.636 W/m·K, the specific heat
was 510 J/kg·K, the solidus temperature was 1490 ◦C, the liquidus temperature was 1500
◦C and the heat of fusion was 2.5e+5 J/kg. The reflectivity was assumed to be 0.3. Note
that there was no special treatment used for the particles whose temperature was above
the liquidus temperature, and the fluid motion of the molten metal and the evaporation
were not considered in this work.

The multi-resolution particle arrangement as shown in Figure 6 was utilised for the
simulation. To calculate the heat transfer from the laser beam, the ray tracing algorithm
e.g. [2] was applied. The laser beam was divided into as small areas as 0.1 mm and each
area generated a ray with the thermal energy based on the Gaussian distribution of the
laser power. Each simulation was conducted for the time corresponding to D/U . Note
that it is assumed that the reflected laser beam does not interact with the specimen in
this work. The MPS-like flux (FLX-M) was used for the flux formulation.

The spatial distributions for the maximum temperature, which is the highest temper-
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(a) Laser Condition A (b) Laser Condition B

(c) Laser Condition C (d) Laser Condition D

Figure 7: Maximum temperatures for the laser irradiation simulation

(a) Width (b) Depth (c) Evaporated Volume

Figure 8: Simulation results for the laser irradiation simulation

ature throughout the simulation for each particle, are illustrated in Figure 7. The region
where the maximum temperature is higher than the liquidus temperature corresponds to
the melted area. The widths and depths of the melted regions were compared with the
experimental results as plotted in Figures 8(a) and 8(b) respectively. As to the widths,
the simulation results are in good agreement with the experimental results although the
result of the laser condition D (where the spot diameter is 2.87 mm) had relatively larger
error between the simulation and experiment. A similar tendency can be seen for the
depths of the melted region where the error for the laser condition D is too large to be
ignored. One of the reasons for the large error in the laser condition D is because the
latent heat for the evaporation is not considered in the simulations. Assuming that the
boiling temperature is 3000 ◦C, the volume of the evaporated particles, whose maximum
temperatures are over the boiling temperature, are plotted in Figure 8(c). The evaporated
volume is larger when the spot diameter is larger, and consequently the error between
simulation and experiment also becomes higher. However, when the effect of the evapo-
ration is not significant, the dimensions of the melted region corresponds quite well with
the experimental results. Considering the latent heat for the evaporation is one of our
future works.
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5 CONCLUSIONS

New formulations for the heat conduction problem based on the LSMPS method were
presented in order to simulate the laser irradiation on a metal block. The proposed method
can conserve the total thermal energy and then more accurate simulations with external
heat sources can be conducted when compared with the standard LSMPS method. It
was revealed that the LSMPS-like flux method provides inaccurate results with the over-
shooting and undershooting for the non-regular particle arrangement, while the MPS-like
flux method gives more accurate results even for irregular and multi-resolution particle
distributions. When applied to the laser irradiation onto metal parts, the temperatures
and the dimensions of the melted area were able to be well evaluated and the validity of
the proposed method was successfully confirmed.
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